Sorry, you need to enable JavaScript to visit this website.

Further Reading

Found 78 results
Author Title [ Type(Desc)] Year
Journal Article
Kurtz, N.T., Markus T., Farrell S.L., Worthen D.L., & Boisvert L.N. (2011).  Observations of recent Arctic sea ice volume loss and its impact on ocean‐atmosphere energy exchange and ice production. Journal of Geophysical Research . 116,
Riggs, G.A., Hall D.K., & Román M.O. (2017).  Overview of NASA’s MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) snow-cover Earth System Data Records. Earth System Data Records. 9, 765-777.
Foster, J. L., Skofronick-Jackson G., Meng H., Wang J. R., Riggs G., Kocin P. J., et al. (2012).  Passive Microwave Remote Sensing of the Historic February 2010 Snow Storms in the Middle Atlantic Region of the U.S.. Hydrol. Processes. 26(22), 3459-3471.
Skofronick-Jackson, G. M., Kim M. - J., Weinman J. A., & Chang D.-E. (2004).  A Physical Model to Determine Snowfall over Land by Microwave Radiometry. IEEE Trans. Geosci. Remote Sens. 42, 1047-1058.
Kim, M.-J., Weinman J. A., Olson W. S., Chang D. - E., Skofronick-Jackson G., & Wang J. R. (2008).  A physical model to estimate snowfall over land using AMSU-B observations. J. Geophys. Res . 113(D9), 
Tan, S., Aksoy M., Brogioni M., Macelloni G., Durand M., Jezek K. C., et al. (2015).  Physical Models of Layered Polar Firn Brightness Temperatures from 0.5 GHz to 2 GHz. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 8(7), 3681-3691.
Lacroix, P., Legrésy B., Remy F., Blarel F., Picard G., & Brucker L. (2009).  Rapid change of snow surface properties at Vostok, East Antarctica, revealed by altimetry and radiometry. Remote Sensing of Environment. 113(12), 2633-2641.
S. Skiles, MK., Painter T. H., Belnap J., Holland L., Reynolds R. L., Goldstein H. L., et al. (2015).  Regional variability in dust-on-snow processes and impacts in the Upper Colorado River Basin. Hydrological Processes. 29(26), 5397 - 5413.
Langlois, A., Royer A., Montpetit B., Picard G., Brucker L., Arnaud L., et al. (2010).  On the relationship between snow grain morphology and in-situ near infrared calibrated reflectance photographs. Cold Regions Science and Technology. 61(1), 34-42.
Sugg, J.W., Perry L.B., Hall D.K., & Riggs G.A. (2014).  Satellite perspectives on the spatial patterns of new snowfall in the Southern Appalachian Mountains. Hydrological Processes.
Palm, S. P., Yang Y., Spinhirne J., & Marshak A. (2011).  Satellite remote sensing of blowing snow properties over Antarctica. J. Geophys. Res . 116(D16123), 
Hall, D.K., Comiso J.C., DiGirolamo N.E., Shuman C.A., Key J.R., & Koenig L.S. (2012).  A Satellite-Derived Climate-Quality Data Record of the Clear-Sky Surface Temperature of the Greenland Ice Sheet. Journal of Climate. 25(14), 4785-4798.
Kurt, N.T., Farrell S.L., Studinger M., Galin N., Harbeck J.P., Lindsay R., et al. (2013).  Sea ice thickness, freeboard, and snow depth products from Operation IceBridge airborne data. Cryosphere. 7, 1035-1056.
Foster, J., Hall D.K., Kell R., & Chiu L. (2009).  Seasonal Snow Extent and Snow Mass in South America Using SMMR and SSM/I Passive Microwave Data (1979-2003). Remote Sensing of Environment. 113, 291-305.
Langlois, A., Brucker L., Kohn J., Royer A., Derksen C., Cliche P., et al. (2009).  Simulation of snow water equivalent (SWE) using thermodynamic snow models in Québec, Canada. Journal of Hydrometeorology. 10(6), 1447-1463.
Picard, G., Brucker L., Roy A., Dupont F., Fily M., Royer A., et al. (2013).  Simulation of the microwave emission of multi-layered snowpacks using the Dense Media Radiative transfer theory: the DMRT-ML model. Geosci. Model Dev.. 6, 1061-1078.
Brucker, L., Picard G., & Fily M. (2010).  Snow grain size profile deduced from microwave snow emissivities in Antarctica. Journal of Glaciology. 56(197), 514-524.
Yang, Y., Marshak A., Palm S., & Harding D. (2017).  Snow grain size retrieval over the polar ice sheets with the Ice, Cloud, and land Elevation Satellite (ICESat) observations. J. Quant. Spectrosc. Radiat. Transfer. 186, 159-164.
Magand, O., Picard G., Brucker L., Fily M., & Genthon C. (2008).  Snow melting bias in microwave mapping of Antarctic snow accumulation. The Cryosphere. 2(2), 109-115.
Kidd, C., Becker A., Huffman G. J., Muller C. L., Joe P., Skofronick-Jackson G., et al. (2017).  So, How Much of the Earth’s Surface Is Covered by Rain Gauges? . Bull. Amer. Meteor. Soc. 98(1), 69-78.
Miege, C., Forster R., Brucker L., Koenig L., Solomon D. K., Paden J., et al. (2016).  Spatial extent and temporal variability of the Greenland firn aquifer detected by ground and airborne radars. J. Geophys. Res. Earth Surf.. 121,
Skofronick-Jackson, G., & Johnson B. T. (2011).  Surface and Atmospheric Contributions to Passive Microwave Brightness Temperatures for Falling Snow Events. J. Geophys. Res . 116(D02213), 
Yang, Y., Marshak A., Varnai T., Wiscombe W. J., & Yang P. (2010).  Uncertainties in ice sheet altimetry from a space-borne 1064-nm single channel lidar due to undetected thin clouds. IEEE Trans. Geos. Remote Sens. 48, 250-259.
Hall, D.K., Nghiem S.V., Rigor I.G., & Miller J.A. (2015).  Uncertainties of temperature measurements on snow-covered land and sea ice from in-situ and MODIS data during BROMEX. Journal of Applied Meteorology and Climatology. 54(5), 966-978.
Larue, F., Royer A., De Seve D., Langlois A., Roy A., & Brucker L. (2017).  Validation analysis of the GlobSnow-2 database over an eco-climatic latitudinal gradient in Eastern Canada. Remote Sensing of Environment. 194, 264-277.