Sorry, you need to enable JavaScript to visit this website.

Further Reading

Found 22 results
Author Title [ Type(Desc)] Year
Filters: First Letter Of Last Name is C  [Clear All Filters]
Book Chapter
Comiso, J.C., & Hall D.K. (2014).  Current Climate Trends in the Arctic. WIREs Climate Change, Wiley Interdisciplinary Reviews (WIREs).
Journal Article
Newman, T., Farrell S.L., Richter-Menge J., Connor L.N., Kurtz N.T., Elder B.C., et al. (2014).  Assessment of radar-derived snow depth over Arctic sea ice. J. Geophys. Res. Oceans. 119, 8578–8602.
Bokhorst, S., S Pedersen H., Brucker L., Anisimov O., Bjerke J. W., Brown R. D., et al. (2016).  Changing Arctic snow cover: a review of recent developments and assessment of future needs for observations, modelling and impacts. Ambio. 45, 516-537.
Hall, D.K., Box J.E., Casey K.A., Hook S.J., Shuman C.A., & Steffen K. (2008).  Comparison of satellite-derived ice and snow surface temperatures over Greenland from MODIS, ASTER, ETM+ and in-situ observations. Remote Sensing of Environment. 112(10), 3739-3749.
Cavalieri, D. J., Markus T., Ivanoff A., Miller J. A., Brucker L., Sturm M., et al. (2012).  A comparison of snow depth on sea ice retrievals using airborne atlimeters and an AMSR-E simulator.. IEEE Transactions on Geoscience & Remote Sensing. 50(8), 3027-3040.
Hall, D.K., Crawford C.J., DiGirolamo N.E., Riggs G.A., & Foster J.L. (2015).  Detection of earlier snowmelt in the Wind River Range, Wyoming, using Landsat imagery. Remote Sensing of Environment. 162, 45-54.
Brucker, L., Dinnat E., Picard G., & Champollion N. (2014).  Effect of snow surface metamorphism on Aquarius L-band radiometer observations at Dome C, Antarctica. IEEE Transactions on Geoscience & Remote Sensing. 52(11), 7408-7417.
Kurtz, N.T., Markus T., Cavalieri D.J., Sparling L.C., Krabill W., Gasiewski A.J., et al. (2009).  Estimation of sea ice thickness distributions through the combination of snow depth and satellite laser altimetry data. Journal of Geophysical Research.
Farrell, S.L., Kurtz N.T., Connor L., Elder B., Leuschen C., Markus T., et al. (2012).  A First Assessment of IceBridge Snow and Ice Thickness Data over Arctic Sea Ice. Trans. Geosc. Rem. Sens.. 50(6), 
Skofronick-Jackson, G., Hudak D., Petersen W., Nesbitt S. W., Chandrasekar V., Durden S., et al. (2015).  Global Precipitation Measurement Cold Season Precipitation Experiment (GCPEx): For Measurement Sake Let it Snow. Bull. Amer. Meteor. Soc.. 96, 1719-1741.
Painter, T. H., Barrett A. P., Landry C. C., Neff J. C., Cassidy M. P., Lawrence C. R., et al. (2007).  Impact of disturbed desert soils on duration of mountain snow cover. Geophysical Research Letters. 34(12), 
Landry, C. C., Buck K. A., Raleigh M. S., & Clark M. P. (2014).  Mountain system monitoring at Senator Beck Basin, San Juan Mountains, Colorado: A new integrative data source to develop and evaluate models of snow and hydrologic processes. Water Resources Research. 50(2), 1773 - 1788.
Hall, D.K., Cullather R.I., Comiso J.C., DiGirolame N.E., Nowicki S.M., & Medley B.C. (2018).  A multilayer IST – albedo product of Greenland from MODIS. Remote Sensing [Special Issue: Remote Sensing of Essential Climate Variables and their Applications]. 10(4), 555.
Hall, D.K., Cullather R.I., Comiso J.C., DiGirolame N.E., Nowicki S.M., & Medley B.C. (2018).  A multilayer IST – albedo product of Greenland from MODIS. Remote Sensing [Special Issue: Remote Sensing of Essential Climate Variables and their Applications]. 10(4), 555.
Crawford, C.J., Manson S.M., Bauer M.E., & Hall D.K. (2013).  Multitemporal snow cover mapping in mountainous terrain for Landsat climate data record development. Remote Sensing of Environment. 135, 224-233.
Foster, J. L., Skofronick-Jackson G., Meng H., Wang J. R., Riggs G., Kocin P. J., et al. (2012).  Passive Microwave Remote Sensing of the Historic February 2010 Snow Storms in the Middle Atlantic Region of the U.S.. Hydrol. Processes. 26(22), 3459-3471.
Skofronick-Jackson, G. M., Kim M. - J., Weinman J. A., & Chang D.-E. (2004).  A Physical Model to Determine Snowfall over Land by Microwave Radiometry. IEEE Trans. Geosci. Remote Sens. 42, 1047-1058.
Kim, M.-J., Weinman J. A., Olson W. S., Chang D. - E., Skofronick-Jackson G., & Wang J. R. (2008).  A physical model to estimate snowfall over land using AMSU-B observations. J. Geophys. Res . 113(D9), 
Hall, D.K., Comiso J.C., DiGirolamo N.E., Shuman C.A., Key J.R., & Koenig L.S. (2012).  A Satellite-Derived Climate-Quality Data Record of the Clear-Sky Surface Temperature of the Greenland Ice Sheet. Journal of Climate. 25(14), 4785-4798.
Foster, J., Hall D.K., Kell R., & Chiu L. (2009).  Seasonal Snow Extent and Snow Mass in South America Using SMMR and SSM/I Passive Microwave Data (1979-2003). Remote Sensing of Environment. 113, 291-305.
Langlois, A., Brucker L., Kohn J., Royer A., Derksen C., Cliche P., et al. (2009).  Simulation of snow water equivalent (SWE) using thermodynamic snow models in Québec, Canada. Journal of Hydrometeorology. 10(6), 1447-1463.
Hall, D.K., Comiso J.C., DiGirolamo N.E., Shuman C.A., Box J.E., & Koenig L.S. (2013).  Variability in the surface temperature and melt extent of the Greenland ice sheet from MODIS. Geophysical Research Letters. 40, 1-7.