Sorry, you need to enable JavaScript to visit this website.

Further Reading

Found 78 results
Author Title [ Type(Asc)] Year
Journal Article
Brucker, L., Dinnat E., & Koenig L. (2014).  Weekly-gridded Aquarius L-band radiometer/scatterometer observations and salinity retrievals over the polar regions, part 1: Product description. The Cryosphere. 8, 905-913.
Brucker, L., Dinnat E., & Koenig L. (2014).  Weekly-gridded Aquarius L-band radiometer/scatterometer observations and salinity retrievals over the polar regions, part 2: Initial product analysis. The Cryosphere. 8, 915-930.
Hall, D.K., Comiso J.C., DiGirolamo N.E., Shuman C.A., Box J.E., & Koenig L.S. (2013).  Variability in the surface temperature and melt extent of the Greenland ice sheet from MODIS. Geophysical Research Letters. 40, 1-7.
Larue, F., Royer A., De Seve D., Langlois A., Roy A., & Brucker L. (2017).  Validation analysis of the GlobSnow-2 database over an eco-climatic latitudinal gradient in Eastern Canada. Remote Sensing of Environment. 194, 264-277.
Hall, D.K., Nghiem S.V., Rigor I.G., & Miller J.A. (2015).  Uncertainties of temperature measurements on snow-covered land and sea ice from in-situ and MODIS data during BROMEX. Journal of Applied Meteorology and Climatology. 54(5), 966-978.
Yang, Y., Marshak A., Varnai T., Wiscombe W. J., & Yang P. (2010).  Uncertainties in ice sheet altimetry from a space-borne 1064-nm single channel lidar due to undetected thin clouds. IEEE Trans. Geos. Remote Sens. 48, 250-259.
Skofronick-Jackson, G., & Johnson B. T. (2011).  Surface and Atmospheric Contributions to Passive Microwave Brightness Temperatures for Falling Snow Events. J. Geophys. Res . 116(D02213), 
Miege, C., Forster R., Brucker L., Koenig L., Solomon D. K., Paden J., et al. (2016).  Spatial extent and temporal variability of the Greenland firn aquifer detected by ground and airborne radars. J. Geophys. Res. Earth Surf.. 121,
Kidd, C., Becker A., Huffman G. J., Muller C. L., Joe P., Skofronick-Jackson G., et al. (2017).  So, How Much of the Earth’s Surface Is Covered by Rain Gauges? . Bull. Amer. Meteor. Soc. 98(1), 69-78.
Magand, O., Picard G., Brucker L., Fily M., & Genthon C. (2008).  Snow melting bias in microwave mapping of Antarctic snow accumulation. The Cryosphere. 2(2), 109-115.
Yang, Y., Marshak A., Palm S., & Harding D. (2017).  Snow grain size retrieval over the polar ice sheets with the Ice, Cloud, and land Elevation Satellite (ICESat) observations. J. Quant. Spectrosc. Radiat. Transfer. 186, 159-164.
Brucker, L., Picard G., & Fily M. (2010).  Snow grain size profile deduced from microwave snow emissivities in Antarctica. Journal of Glaciology. 56(197), 514-524.
Picard, G., Brucker L., Roy A., Dupont F., Fily M., Royer A., et al. (2013).  Simulation of the microwave emission of multi-layered snowpacks using the Dense Media Radiative transfer theory: the DMRT-ML model. Geosci. Model Dev.. 6, 1061-1078.
Langlois, A., Brucker L., Kohn J., Royer A., Derksen C., Cliche P., et al. (2009).  Simulation of snow water equivalent (SWE) using thermodynamic snow models in Québec, Canada. Journal of Hydrometeorology. 10(6), 1447-1463.
Foster, J., Hall D.K., Kell R., & Chiu L. (2009).  Seasonal Snow Extent and Snow Mass in South America Using SMMR and SSM/I Passive Microwave Data (1979-2003). Remote Sensing of Environment. 113, 291-305.
Kurt, N.T., Farrell S.L., Studinger M., Galin N., Harbeck J.P., Lindsay R., et al. (2013).  Sea ice thickness, freeboard, and snow depth products from Operation IceBridge airborne data. Cryosphere. 7, 1035-1056.
Hall, D.K., Comiso J.C., DiGirolamo N.E., Shuman C.A., Key J.R., & Koenig L.S. (2012).  A Satellite-Derived Climate-Quality Data Record of the Clear-Sky Surface Temperature of the Greenland Ice Sheet. Journal of Climate. 25(14), 4785-4798.
Palm, S. P., Yang Y., Spinhirne J., & Marshak A. (2011).  Satellite remote sensing of blowing snow properties over Antarctica. J. Geophys. Res . 116(D16123), 
Sugg, J.W., Perry L.B., Hall D.K., & Riggs G.A. (2014).  Satellite perspectives on the spatial patterns of new snowfall in the Southern Appalachian Mountains. Hydrological Processes.
Langlois, A., Royer A., Montpetit B., Picard G., Brucker L., Arnaud L., et al. (2010).  On the relationship between snow grain morphology and in-situ near infrared calibrated reflectance photographs. Cold Regions Science and Technology. 61(1), 34-42.
S. Skiles, MK., Painter T. H., Belnap J., Holland L., Reynolds R. L., Goldstein H. L., et al. (2015).  Regional variability in dust-on-snow processes and impacts in the Upper Colorado River Basin. Hydrological Processes. 29(26), 5397 - 5413.
Lacroix, P., Legrésy B., Remy F., Blarel F., Picard G., & Brucker L. (2009).  Rapid change of snow surface properties at Vostok, East Antarctica, revealed by altimetry and radiometry. Remote Sensing of Environment. 113(12), 2633-2641.
Tan, S., Aksoy M., Brogioni M., Macelloni G., Durand M., Jezek K. C., et al. (2015).  Physical Models of Layered Polar Firn Brightness Temperatures from 0.5 GHz to 2 GHz. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 8(7), 3681-3691.
Kim, M.-J., Weinman J. A., Olson W. S., Chang D. - E., Skofronick-Jackson G., & Wang J. R. (2008).  A physical model to estimate snowfall over land using AMSU-B observations. J. Geophys. Res . 113(D9), 
Skofronick-Jackson, G. M., Kim M. - J., Weinman J. A., & Chang D.-E. (2004).  A Physical Model to Determine Snowfall over Land by Microwave Radiometry. IEEE Trans. Geosci. Remote Sens. 42, 1047-1058.