Snow Microstructure Measurements During SnowEx

Chris Derksen, Josh King
Climate Research Division, ECCC

Nick Rutter, Markus Todt
Northumbria University

Mike Durand, Jinmei Pan
The Ohio State University

Fanny Larue, Alex Roy, Alex Langlois
Université de Sherbrooke

Michaela Teich
Utah State University

Zoe Courville
CRREL
Why Quantitative Snow Microstructure?

• Traditional grain size estimates are subjective and prone to inconsistency between observers

• Many applications require snow microstructure variables (specific surface area; correlation length) that can only be derived by objective measurements

• Significant progress in field measurements of snow microstructure have occurred over the past decade:
 - *micro-CT*
 - NIR photography
 - Contact spectroscopy
 - *Integrating sphere/SWIR laser*
 - *Snow MicroPenetrometer*
Why Quantitative Snow Microstructure?

Tools like the SMP allow spatial extension of snowpit measurements with minimal effort.
SnowEx provided an opportunity for inter-comparison of microstructure techniques:
- IRIS versus IceCube; IceCube versus IceCube
- Multiple SMP’s
- Casting for micro-CT of SMP and IceCube profiles
Snow Microstructure Instrumentation: Snow MicroPenetrometer

- Very high vertical resolution measurements of force (N)
- ~200 measurements per mm
- 120 cm maximum depth (profiles can be stacked)
- Force measurements converted to microstructure parameters (density, SSA, correlation length) provided some site specific analysis with other measurements (i.e. micro-CT) is performed

Proksch et al. (2016)
Snow Microstructure Instrumentation: IRIS and IceCube

- SSA = surface area per unit mass
- calculated from reflectance at 1310 nm
- original relationship derived using CH4 adsorption

Gallet et al. (2009)
SnowEx Microstructure Sampling

SMP: 1123 profiles (62 SnowEx pits; 1061 transect measurements; 2 scaling experiments; measurements to support GBRS

SSA: 96 profiles at SnowEx pits/trenches

Casting: 4 profiles + 1 instrument inter-comparison site
SMP Data in the SnowEx Archive

- Because of the large number of SMP profiles, a single index file was created with standard reference information for each profile

<table>
<thead>
<tr>
<th>SMP_ID</th>
<th>Date</th>
<th>SMP Observer</th>
<th>SSA</th>
<th>Transect/Pit</th>
<th>SnowEx_Ref</th>
<th>SMP_sampling_point</th>
<th>Spacing (m)</th>
<th>File_name</th>
<th>Pen_depth (mm)</th>
<th>Snow_depth (mm)</th>
<th>OL Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMP_B</td>
<td>20170217C. Derksen</td>
<td>IRIS</td>
<td>P</td>
<td>68E</td>
<td>68E-SSA-A</td>
<td>S34M1264</td>
<td>1200</td>
<td>1200</td>
<td>1670</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>SMP_B</td>
<td>20170217C. Derksen</td>
<td>IRIS</td>
<td>P</td>
<td>68E</td>
<td>68E-SSA-B</td>
<td></td>
<td>1265</td>
<td>1266</td>
<td>1200</td>
<td>1670</td>
<td>0</td>
</tr>
<tr>
<td>SMP_B</td>
<td>20170217C. Derksen</td>
<td>IRIS</td>
<td>P</td>
<td>68E</td>
<td>68E-SSA-C</td>
<td></td>
<td>1266</td>
<td>1267</td>
<td>1200</td>
<td>1670</td>
<td>0</td>
</tr>
<tr>
<td>SMP_B</td>
<td>20170217C. Derksen</td>
<td>IRIS</td>
<td>P</td>
<td>68E</td>
<td>68E-mid</td>
<td></td>
<td>1267</td>
<td>1268</td>
<td>1200</td>
<td>1670</td>
<td>0</td>
</tr>
<tr>
<td>SMP_B</td>
<td>20170217C. Derksen</td>
<td>IRIS</td>
<td>P</td>
<td>68E</td>
<td>68E-dens-right</td>
<td></td>
<td>1268</td>
<td>1269</td>
<td>1200</td>
<td>1670</td>
<td>0</td>
</tr>
<tr>
<td>SMP_B</td>
<td>20170217C. Derksen</td>
<td>IRIS</td>
<td>P</td>
<td>68E</td>
<td>68E-dens-left</td>
<td></td>
<td>1269</td>
<td>1270</td>
<td>1200</td>
<td>1670</td>
<td>0</td>
</tr>
<tr>
<td>SMP_B</td>
<td>20170217C. Derksen</td>
<td>IRIS</td>
<td>P</td>
<td>68E</td>
<td>68E-dens-C</td>
<td></td>
<td>1270</td>
<td>1271</td>
<td>1200</td>
<td>1670</td>
<td>0</td>
</tr>
<tr>
<td>SMP_B</td>
<td>20170217C. Derksen</td>
<td>IRIS</td>
<td>P</td>
<td>68E</td>
<td>68E-SSA-B</td>
<td></td>
<td>1271</td>
<td>1272</td>
<td>1200</td>
<td>1670</td>
<td>0</td>
</tr>
<tr>
<td>SMP_B</td>
<td>20170217C. Derksen</td>
<td>IRIS</td>
<td>P</td>
<td>68E</td>
<td>68E-SSA-C</td>
<td></td>
<td>1272</td>
<td>1273</td>
<td>1200</td>
<td>1670</td>
<td>0</td>
</tr>
<tr>
<td>SMP_B</td>
<td>20170217C. Derksen</td>
<td>IRIS</td>
<td>P</td>
<td>68E</td>
<td>68E-dens-right</td>
<td></td>
<td>1273</td>
<td>1274</td>
<td>1200</td>
<td>1670</td>
<td>0</td>
</tr>
<tr>
<td>SMP_B</td>
<td>20170217C. Derksen</td>
<td>IRIS</td>
<td>P</td>
<td>68E</td>
<td>68E-dens-left</td>
<td></td>
<td>1274</td>
<td>1275</td>
<td>1200</td>
<td>1670</td>
<td>0</td>
</tr>
<tr>
<td>SMP_B</td>
<td>20170217C. Derksen</td>
<td>IRIS</td>
<td>P</td>
<td>68E</td>
<td>68E-dens-C</td>
<td></td>
<td>1275</td>
<td>1276</td>
<td>1200</td>
<td>1670</td>
<td>0</td>
</tr>
</tbody>
</table>
SMP Data in the SnowEx Archive

- Original binary files in proprietary format merged with header information
- .csv file for each profile, with corresponding quicklook .png

```
# SMP Serial: 2
# 2017-02-09
# 19:49:35
# Lat: 39.0105781555
# Lon: -108.18523407
# Total Samples: 157300
# Depth (mm) Force (N)
   0  0.251252
   0  0.004132
   0  0.051303
   0  0.008264
   0  0.051303
   0  0.012397
   0  0.051303
   0  0.016529
   0  0.051303
   0  0.020661
   0  0.052618
   0  0.024793
   0  0.052618
   0  0.028926
   0  0.052618
   0  0.033058
   0  0.053934
```
Additional SMP Tools (Github)

https://github.com/m9brady/SMP_to_CSV
Additional SMP Tools (Github)
Not science ready microstructure retrievals

S34M1273

Density (kg m\(^{-3}\))

Exponential Correlation Length (mm)

Correlation Length (mm)

Specific Surface Area (mm\(^{-1}\))
SSA Data in the SnowEx Archive (IRIS and IceCube)

- Reflectance is the raw measurement
- SSA derived from reflectance using instrument specific calibrations
- Equivalent diameter (Do) calculated from SSA: $D_o = \frac{6}{(\text{SSA} \times \rho_{\text{ice}})}$
- 5 cm vertical resolution
SSA Data in the SnowEx Archive

- .csv file for each profile, with corresponding quicklook .png

Date (yyyy-mm-ddTHH:MM): 2017-02-15T20:07
Name field campaign: SnowEx_Week2
Snowpit ID: 39S
UTMN: 4321393
UTME: 752112
UTM Zone: 12
Instrument: IceCubeNU
Operator: Nick Rutter
Timing: 60 mins
Notes: N/A
Total snow depth (cm): 124

<table>
<thead>
<tr>
<th>Sample signal (mV)</th>
<th>Reflectance (%)</th>
<th>Specific surface area (SSA)</th>
<th>Top Depth (cm)</th>
<th>Do (mm)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>447.1</td>
<td>40.29</td>
<td>27.8</td>
<td>124</td>
<td>0.2354</td>
<td></td>
</tr>
<tr>
<td>479.6</td>
<td>43.19</td>
<td>32.6</td>
<td>122</td>
<td>0.2007</td>
<td></td>
</tr>
<tr>
<td>505.8</td>
<td>45.44</td>
<td>36.9</td>
<td>117</td>
<td>0.1773</td>
<td></td>
</tr>
<tr>
<td>467.1</td>
<td>42.09</td>
<td>30.7</td>
<td>112</td>
<td>0.2131</td>
<td></td>
</tr>
<tr>
<td>412.7</td>
<td>37.08</td>
<td>23.3</td>
<td>107</td>
<td>0.2808</td>
<td></td>
</tr>
</tbody>
</table>
Snow Microstructure: Casting for MicroCT

<table>
<thead>
<tr>
<th>Pit Location</th>
<th>Date</th>
<th>Snow Depth (cm)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSOS Pit</td>
<td>14-Feb-17</td>
<td>122</td>
<td>*missing several samples</td>
</tr>
<tr>
<td>28N</td>
<td>16-Feb-17</td>
<td>139</td>
<td>*missing 127-117</td>
</tr>
<tr>
<td>1W</td>
<td>17-Feb-17</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>68E</td>
<td>17-Feb-17</td>
<td>161</td>
<td></td>
</tr>
<tr>
<td>Fraser Ex Forest</td>
<td>20-Feb-17</td>
<td>68</td>
<td></td>
</tr>
</tbody>
</table>

- One cooler containing samples from LSOS pit and 28N pit was lost in shipment.
- Rest of samples in remaining pits are being prepped and scanned, with scans to be completed by December 2017.
- Calculating average SSA (as related to the calculated object surface to volume, S/V, ratio from the reconstructed microCT data) per sample volume and as a profile along vertical axis of sample.
- Resolution of scans is 8 to 25 microns (doing sub-scans of some layers depending on grain size).
- Will archive microstructure data including S/V ratio, porosity, anisotropy, interconnected pore and snow structures, etc., in .csv files.
- Snow scan images will be available as greyscale or thresholded stacks (2000 images per sample, ~30GB of data per sample, ~50-100 GB per pit).
Status

- SMP data submitted to NSIDC in May; ready to run file-level metadata at ECCC

- IceCube and IRIS data (*.csv) were quality controlled and submitted to NSIDC in May

- Casts currently being processed at CRREL for micro-CT

- Collectively, the SMP, SSA, and snow cast datasets represent a unique set of quantitative snow microstructure measurements which complement the traditional SnowEx snowpits