Resolving spatial variability in SWE using a ground based GPR system

Dan McGrath
Geosciences Department, Colorado State University

And many, many collaborators (Ryan Webb, HP Marshall, Noah Molotch, Chris Hiemstra, Shad O’Neel, Louis Sass, Emily Baker, Chris McNeil and SnowEx ground team)
Example Transects

\[v = 0.24 \text{ m/ns} \]

\[r^2 = 0.61 \]
Travel Time [ns]
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

MagnaProbe depth [m]
0.247941 0.892162

Data Fit Confidence bounds

Shrub Meadow

v=0.24 m/ns
r²=0.89
Land cover control on SWE variability
USGS Alaska Benchmark Glaciers

- Eureka Gulkana
- Valdez
- Scott
- Wolverine

- Wolverine Glacier:
 - long-term sites
 - additional sites
 - 1975 sites
 - 2017 sites

- Gulkana Glacier:

Graphs:
- **Wolverine Glacier**
 - Graph showing mass balance (m) over time (years) with data points for glaciological and calibrated data.
- **Gulkana Glacier**
 - Graph showing mass balance (m) over time (years) with data points for glaciological and calibrated data.

Legend:
- Green: glaciological
- Orange: calibrated
From \(n = 3 \) to \(n = 200,000 \)

\[v = 0.23 \text{ m/\text{ns}} \]

\[r^2 = 0.96 \]
GPR Observations – 2013 – 2017

- Extensive surveys across both glaciers (~25 km)
- Consistent tracks to avoid known crevasse and avalanche hazard; possible bias
• Develop multi-variable stepwise regression, with a threshold for parameter inclusion, between terrain parameters and our SWE observations.
Model Performance – 2013 – 2017

- Terrain parameters do a decent job explaining the variability in the observations
- Radar derived winter balance exceeds stake derived estimates
- Dominance of elevation
- Sx and curvature → capture wind redistribution
- Quite variable
Year to Year Consistency (CoVs)
Thanks!
Small glaciers, big SWE
High rates of mass turnover