Physical Model based SWE Retrieval Algorithm Using X- and Ku- band Radar Backscatter

Jiyue Zhu, Shurun Tan, and Leung Tsang
Joshua King, and Chris Derksen
Juha Lemmetyinen

1 Radiation Laboratory, Department of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor, 48109-2122 MI USA
2 Climate Research Division, Environment and Climate Change Canada, Toronto, ON M3H 5T4, Canada
3 Arctic Research Centre, Finnish Meteorological Institute P.O.Box 503, Fin-00101 Helsinki Finland
Outlines

A. Background scattering subtraction

B. Forward model:
 i. Bicontinuous / DMRT model and regression training
 ii. Parameterized model: only 2 parameters ω_X and τ_X

C. Physical model based SWE retrieval algorithm
 i. Radar retrieval algorithm
 ii. Classify backscatter w.r.t. ω_X
 iii. SWE retrieval performance Using SnowSAR backscatter σ_{VV} (9.6 GHz and 17.2GHz)
Radar backscattering: volume and surface scattering

\[\sigma_{pq}^{\text{total}} = \sigma_{pq}^{\text{volume}} + \sigma_{pq}^{\text{surface}} \exp \left(-\frac{2\tau}{\cos \theta_t} \right) \]

- \(\sigma_{pq}^{\text{volume}} \): volume scattering from snowpack
- \(\sigma_{pq}^{\text{surface}} \): surface scattering from ground

Poster 20
Shurun Tan et al., “Assessment of Background Scattering at X- and Ku-band in Snow Remote Sensing”.
Background scattering subtraction in the SWE retrieval algorithm

\[
F = \min_{\omega_x, \tau_x} \left\{ w_1 \left(\sigma_{X, \text{obs}}^{X, \text{mod}} - \sigma_{X}^{X, \text{mod}} \left(\omega_x, \tau_x \right) \right)^2 + w_2 \left(\sigma_{Ku, \text{obs}}^{Ku, \text{mod}} - \sigma_{Ku}^{Ku, \text{mod}} \left(\omega_x, \tau_x \right) \right)^2 + w_3 \left(\omega_x - \bar{\omega}_x \right)^2 \right\}
\]

Forward model

Parameterized Bic/DMRT model

\[
\sigma_{X}^{X, \text{mod}} \left(\omega_x, \tau_x \right) = \ldots
\]

Radar observations

Snow on measurements

Snow free measurements / Surface scattering model

Extract volume scattering

Extract volume scattering

A priori information

- \(\bar{\omega}_x \)
SnowSAR (Canada TVC 2013) X- and Ku-band backscatter: raw data

- σ_{VV}^X: ranged from -18dB to -11dB
- σ_{VV}^{Ku}: ranged from -11dB to -6dB
Bic/DMRT LUT compare with Canada SnowSAR

- Model: volume scattering
- SnowSAR data: volume scattering + background scattering
Background scattering subtracted from raw data

- Volume scattering of SnowSAR within model predictions
- Shift data more in X band than Ku band
- Larger dynamic range in volume scattering
SWE retrieval algorithm flow chart

Forward model

Parameterized Bic/DMRT model

\[\sigma_{VV}^{X,\text{mod}el}(\omega_X, \tau_X) \quad \sigma_{VV}^{Ku,\text{mod}el}(\omega_X, \tau_X) \]

Radar observations

Snow on measurements

Snow free measurements / Surface scattering model

Extract volume scattering

\[\sigma_{VV}^{X,\text{obs}} \quad \sigma_{VV}^{Ku,\text{obs}} \]

\[\sigma_{VV}^{X,\text{ground}} \quad \sigma_{VV}^{Ku,\text{ground}} \]

Retrieval algorithm

\[F = \text{MIN}_{\omega_X, \tau_X} \left\{ w_1 \left(\sigma_{VV,\text{vol}}^{X,\text{obs}} - \sigma_{VV}^{X,\text{mod}el}(\omega_X, \tau_X) \right)^2 + w_2 \left(\sigma_{VV,\text{vol}}^{Ku,\text{obs}} - \sigma_{VV}^{Ku,\text{mod}el}(\omega_X, \tau_X) \right)^2 + w_3 \left(\omega_X - \bar{\omega}_X \right)^2 \right\} \]

A priori information

\[\bar{\omega}_X \]

Estimated Variables

SWE

\[\omega_X \]

Retrieved

\[\omega_X, \tau_X \]
Computer Generated Snow: Bicontinuous Medium

Real snow cross section image

Computer-generated

Comparison through correlation function

Poster 7
Weihui Gu et al., “DMRT Models for Active and Passive Microwave Remote Sensing”
Snow homogeneous: Bicontinuous Dense Media Radiative Transfer (Bic/DMRT)

coherent

Solve Maxwell’s Eq. over a block of computer snow \((3\lambda - 5\lambda)\) with DDA:
get effective \(P, \kappa_e, \varepsilon_{\text{eff}}\)

incoherent

Substitute the effective parameters into & Solve RTE:
Backscatter: \(\sigma\)

Discrete Dipole Approximation (DDA)

\[
\overline{E}(\overline{r}_i) = \overline{E}_{\text{inc}}(\overline{r}_i) + \frac{k^2}{\varepsilon} \sum_{j=1}^{N} \overline{G}(\overline{r}_i, \overline{r}_j) \cdot \Delta V_j (\varepsilon_r(\overline{r}_j) - 1) \overline{E}(\overline{r}_j)
\]

Radiative Transfer Equation

\[
\frac{dI(\hat{s})}{ds} = -\kappa_e I(\hat{s}) + \int d\hat{s}' P(\hat{s}, \hat{s}') I(\hat{s}')
\]

\(P(\hat{s}, \hat{s}')\): phase matrix
\(\kappa_e\): extinction coefficient
\(I(\hat{s})\): Intensity in direction \(\hat{s}\)
Look-up table (LUT) of Bic/DMRT

Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume fraction f_v</td>
<td>10%</td>
<td>45%</td>
<td>5%</td>
</tr>
<tr>
<td>b parameter</td>
<td>0.6</td>
<td>1.6</td>
<td>0.2</td>
</tr>
<tr>
<td>$\langle \zeta \rangle$ parameter (m$^{-1}$)</td>
<td>5000</td>
<td>15000</td>
<td>2000</td>
</tr>
<tr>
<td>Snow depth d (m)</td>
<td>0.1</td>
<td>1.2</td>
<td>0.1</td>
</tr>
</tbody>
</table>

LUTs

<table>
<thead>
<tr>
<th>SWE</th>
<th>$(\langle \zeta \rangle, b, \rho_{\text{snow}}, d)$</th>
<th>$(\sigma_{VV}^X, \sigma_{VV}^{KU})$ dB</th>
<th>ω_X</th>
<th>τ_X</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>55.02</td>
<td>(9000, 1.2, 10%, 0.6)</td>
<td>(-15.3, -10.6)</td>
<td>0.6805</td>
<td>0.0166</td>
<td>...</td>
</tr>
<tr>
<td>64.19</td>
<td>(9000, 1.2, 10%, 0.7)</td>
<td>(-14.9, -10.1)</td>
<td>0.6805</td>
<td>0.0194</td>
<td>...</td>
</tr>
<tr>
<td>73.36</td>
<td>(9000, 1.2, 10%, 0.8)</td>
<td>(-14.6, -9.7)</td>
<td>0.6805</td>
<td>0.0221</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Parameterization: scattering albedo \(\omega \) and optical thickness \(\tau \), retrieve \(\tau_a \)

\[\kappa_s \text{: scattering coefficients} \]
\[\kappa_a \text{: absorption coefficients} \]
\[\kappa_e \text{: extinction coefficients} \]

\[\kappa_e = \kappa_a + \kappa_s \]

\(\square \) Scattering albedo:

\[\omega = \frac{K_s}{K_s + K_a} = \frac{K_s}{K_e} \]

\(\square \) Optical thickness:

\[\tau = \kappa_e d \]

\(\square \) Absorption loss is proportional to SWE

\[\tau_a = (1 - \omega) \tau = \kappa_a d \propto \text{SWE} \]

\(\square \) Two frequencies, four parameters: \(\omega_X, \tau_X; \omega_{\text{Ku}}, \tau_{\text{Ku}} \)
Parameterize Model
Regression Training
Look up table of Bic/DMRT outputs
Snow Parameter
 : snow density : ...
Two unknowns and two equations:
\(\sigma_X, \sigma_X \) vs. \(\omega_X, \omega_X \)
\(\sigma_X, \sigma_X \) vs. \(\omega_X, \omega_X \)

Bicontinuous DMRT (Multiple scattering)

\(\nu \), related to the tail of correlation function
\(d \), related to snow grain size

\(\rho \), related to snow density

Two parameters

Two observations

Two parameters

Two observations

Regression training: reduce \(\omega_X, \omega_X, T_Ku, T_X \) to \(\omega_X, T_X \)
Regressions between τ_{Ku} and τ_X, ϖ_{Ku} and ϖ_X: based on LUT

Curve fitting of τ

- $R^2 = 0.990$
- RMSE = 0.03
- Bias = 0.02

Curve fitting of ω

- $R^2 = 0.987$
- RMSE = 0.02
- Bias = 0.01

Correlation between (τ_X, τ_{Ku})

Correlation between (ω_X, ω_{Ku})
Regression between single and multiple scattering

Backscatter for X band $\sigma_X \left(\sigma_X^{(1)}(\omega_X, \tau_X) \right)$

Backscatter for Ku band $\sigma_{Ku} \left(\sigma_{Ku}^{(1)}(\omega_{Ku}, \tau_{Ku}) \right)$

Curve fitting of X-band

- $R^2 = 0.963$
- RMSE = 1.05 dB
- Bias = 0.83 dB

Curve fitting of Ku-band

- $R^2 = 0.970$
- RMSE = 0.90 dB
- Bias = 0.72 dB
Validation of parameterized Bic/DMRT model: Canada SnowSAR

- **X band**
 - $R^2 = 0.954$
 - RMSE = 0.28 dB
 - Bias = -0.02 dB

- **Ku band**
 - $R^2 = 0.943$
 - RMSE = 0.24 dB
 - Bias = 0.04 dB

- Good agreement: achieve RSME < 0.28 dB
SWE retrieval algorithm flow chart

Forward model

Parameterized Bic/DMRT model

\[\sigma_{VV}^{X,\text{mod}}(\omega_X, \tau_X) \quad \sigma_{VV}^{Ku,\text{mod}}(\omega_X, \tau_X) \]

Retrieval algorithm

\[F = \min_{\omega_X, \tau_X} \left\{ \begin{align*} &w_1 \left(\sigma_{VV,\text{vol}}^{X,\text{obs}} - \sigma_{VV,\text{mod}}^{X,\text{model}}(\omega_X, \tau_X) \right)^2 \\ &+ w_2 \left(\sigma_{VV,\text{vol}}^{Ku,\text{obs}} - \sigma_{VV,\text{mod}}^{Ku,\text{model}}(\omega_X, \tau_X) \right)^2 \\ &+ w_3 \left(\omega_X - \bar{\omega}_X \right)^2 \end{align*} \right\} \]

A priori information

\[\bar{\omega}_X \]
Radiation Laboratory

Classification: two classes of backscatter, Canada SnowSAR

- Background scattering subtraction & backscatter classification w.r.t. ω_X
 enhances sensitivity of backscatter to SWE
- SWE doubles, Backscatter increases about 2-3dB

\[\omega_X < 0.49 \]
\[\omega_X > 0.49 \]
Radar datasets used

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Location</th>
<th>Date</th>
<th>Frequency</th>
<th>Polarization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finland SnowSAR1</td>
<td>Sodankylä, Finland</td>
<td>Mar. 17th, 2011</td>
<td>X and Ku band</td>
<td>VV&HV</td>
</tr>
<tr>
<td>Finland SnowSAR2</td>
<td>Sodankylä, Finland</td>
<td>December 19th, 2011 to March 24th, 2012</td>
<td>X and Ku band</td>
<td>VV&HV</td>
</tr>
<tr>
<td>Canada SnowSAR</td>
<td>Trail Valley Creek (TVC), the Northwest Territories, Canada</td>
<td>winter 2012~2013</td>
<td>X and Ku band</td>
<td>VV&HV</td>
</tr>
</tbody>
</table>
Performance of SWE retrieval algorithm: Canada SnowSAR

- Achieves RMSE = 26.98 mm, and $r = 0.7$
- For SWE < 200 mm, RMSE = 24.31 mm

SCLP requirement: RMSE < 20 mm for SWE < 200 mm and RMSE < 10% of total SWE for SWE > 200 mm
Performance of SWE retrieval algorithm: Finland SnowSAR1 and SnowSAR2

- Achieves RMSE = ~18 mm
- Achieves RMSE = ~24 mm

SnowSAR1
- SWE Retrieval Algorithm

SnowSAR2
- SWE Retrieval Algorithm

Correlation coefficients:
- r = 0.728
- RMSE = 17.62 mm
- Bias = 1.22 mm

r = 0.659
- RMSE = 24.23 mm
- Bias = -7.09 mm
Methods to improve the algorithm

Better background scattering subtraction

- Radar observation σ_{obs} from snow free conditions
- Polarimetry: volume / surface scattering decomposition
- Combine active and passive measurements to retrieve both soil and snowpack parameters

Better a priori estimate of ω_X (or effective grain size)

- Solution 1: snow thermodynamics model with ancillary meteorological data
- Solution 2: combine active and passive microwave measurements
Summary

A. Background scattering subtraction:
 i. Affects more in X band than Ku band
 ii. Volume backscatter sensitive to SWE

B. Forward model: parameterized Bic/DMRT
 i. Regression training: 2 observations vs. 2 unknowns \((\omega_X \text{ and } \tau_X)\)
 ii. Validated against SnowSAR data

C. Retrieval algorithm: SWE \(\propto \tau_{a,X} = (1 - \omega_X)\tau_X\)
 i. A priori \(\omega_X\)
 ii. Classify backscatter w.r.t. \(\omega_X\) restores its high sensitivity to SWE
 iii. Performance: RMSE <30mm for SWE up to 300mm
Thanks for your attention!
Any question?