Skip to main content
Snow quenches our thirst, cools our planet
2024
-
Bonnell, R.,
McGrath, D.,
Tarricone, J.,
P. Marshall, H.,
Bump, E. ,
Duncan, C. ,
Kampf, S.,
Lou, Y. ,
Olsen-Mikitowicz, A. ,
Sears, M. ,
Williams, K.,
Zeller, L.,
&
Zheng, Y.
(2024).
Evaluating L-band InSAR snow water equivalent retrievals with repeat ground-penetrating radar and terrestrial lidar surveys in northern Colorado.
The Cryosphere,
18(8),
3765-3785.
https://doi.org/10.5194/tc-18-3765-2024.
-
Brangers, I.,
P. Marshall, H.,
De Lannoy, G. ,
Dunmire, D. ,
Mätzler, C. ,
&
Lievens, H.
(2024).
Tower-based C-band radar measurements of an alpine snowpack.
The Cryosphere,
18(7),
3177-3193.
https://doi.org/10.5194/tc-18-3177-2024.
-
(2024).
Snow Depth Extraction From Time‐Lapse Imagery Using a Keypoint Deep Learning Model.
Water Resources Research,
60(7),
https://doi.org/10.1029/2023WR036682.
-
Hoppinen, Z.,
Palomaki, R. ,
Brencher, G.,
Dunmire, D. ,
Gagliano, E.,
Marziliano, A.,
Tarricone, J.,
&
Marshall, H.P
(2024).
Evaluating snow depth retrievals from Sentinel-1 volume scattering over NASA SnowEx sites.
The Cryosphere,
18(11),
5407-5430.
https://doi.org/10.5194/tc-18-5407-2024.
-
Hoppinen, Z.,
Oveisgharan, S.,
P. Marshall, H.,
Mower, R.,
Elder, K.,
&
Vuyovich, C.
(2024).
Snow Water Equivalent Retrieval Over Idaho, Part B: Using L-band UAVSAR Repeat-Pass Interferometry.
The Cryosphere,
18(2),
575-592.
https://doi.org/10.5194/tc-18-575-2024.
-
Meehan, T.G.,
Hojatimalekshah, A.,
Marshall, H.P.,
Deeb, E. ,
O'Neel, S.,
McGrath, D.,
Webb, R.,
Bonnell, R.,
Raleigh, M.,
Hiemstra, C.,
&
Elder, K.
(2024).
Spatially distributed snow depth, bulk density, and snow water equivalent from ground-based and airborne sensor integration at Grand Mesa, Colorado, USA.
The Cryosphere,
18,
3253-3276.
https://doi.org/10.5194/tc-18-3253-2024.
-
(2024).
Snow water equivalent retrieval over Idaho – Part 1: Using Sentinel-1 repeat-pass interferometry.
The Cryosphere,
559-574.
https://doi.org/10.5194/tc-18-559-2024.
-
(2024).
Thermal infrared shadow-hiding in GOES-R ABI imagery: snow and forest temperature observations from the SnowEx 2020 Grand Mesa field campaign.
The Cryosphere,
18,
2257-2276.
https://doi.org/10.5194/tc-18-2257-2024.
-
(2024).
Bayesian physical–statistical retrieval of snow water equivalent and snow depth from X- and Ku-band synthetic aperture radar – demonstration using airborne SnowSAr in SnowEx’17.
The Cryosphere,
18,
747-773.
https://doi.org/10.5194/tc-18-747-2024.
-
(2024).
Snowpack Strength and Micromechanics on Grand Mesa, Colorado, via the 2017 NASA SnowEx SnowMicroPen Dataset.
Cold Regions Engineering 2024,
Article Sustainable and Resilient Engineering Solutions for Changing Cold Regions.
https://doi.org/10.1061/9780784485460.035.
-
Wilder, B.,
Lee, C.,
Chlus, A.,
Marshall, H.P.,
Brandt, J.,
&
Kinoshita, A.
(2024).
Computationally Efficient Retrieval of Snow Surface Properties From Spaceborne Imaging Spectroscopy Measurements Through Dimensionality Reduction Using k-Means Spectral Clustering.
IEEE,
17,
8594-8605.
10.1109/JSTARS.2024.3386834.
-
(2024).
Evaluating cosmic ray neutron sensor estimates of snow water equivalent in a prairie environment using UAV lidar.
Water Resources Research,
60(6),
https://doi.org/10.1029/2024WR037164.
-
Xu, Haokui,
Tsang, L.,
Xu, X.,
Margulis, S.A.,
Yueh, S.,
&
Shah, R.
(2024).
Bistatic Rough Surface Scattering at P-Band in Grand Mesa Based on Lidar Observations of Surface Roughness and Topography.
IEEE ,
17,
35-44.
Article Journal of Selected Topics in Applied Earth Observations and Remote Sensing.
https://doi.org/10.1109/JSTARS.2023.3324217.
2023
-
Bonnell, R.,
McGrath, D.,
Hedrick, A. ,
Trujillo, E. ,
Meehan, T.G.,
Marshall, H.P,
Sexton, G. ,
Fulton, J. ,
Ronayne, M. ,
Fassnacht, S.R.,
Webb, R.,
&
Hale, K.
(2023).
Snowpack relative permittivity and density derived from near-coincident lidar and ground-penetrating radar.
Hydrological Processes,
37(10),
https://doi.org/10.1002/hyp.14996.
-
(2023).
SWE Retrieval Algorithms Based on the Parameterized BI-Continuous DMRT Model Without Priors on Grain Size OR Scattering Albedo.
Progress In Electromagnetics Research,
178,
129-147.
http://dx.doi.org/10.2528/PIER23071101.
-
(2023).
Evaluating the utility of active microwave observations as a snow mission concept using observing system simulation experiments.
The Cryosphere,
17(9),
3915-3931.
https://doi.org/10.5194/tc-17-3915-2023.
-
Gao, S.,
Li, Z.,
Zhang, P.,
Chen, Q.,
Huang, L. ,
Zhou, J. ,
Zhao, C.,
Qiao, H.,
&
Zheng, Z.
(2023).
A novel global snow depth retrieval method considering snow metamorphism and forest influence.
Remote Sensing of Environment,
295,
https://doi.org/10.1016/j.rse.2023.113712.
-
Hojatimalekshah, A.,
Gongora, J. ,
Enterkine, J.,
Glenn, N.,
Caughlin, T. ,
Marshall, H.P,
&
Hiemstra, C.
(2023).
Lidar and deep learning reveal forest structural controls on snowpack. Frontiers in Ecology and the Environment.
Frontiers in Ecology and the Environment,
21(1),
49-54.
https://doi.org/10.1002/fee.2584.
-
(2023).
Six consecutive seasons of high-resolution mountain snow depth maps from satellite stereo imagery.
Geophysical Research Letters,
50(24),
https://doi.org/10.1029/2023GL104871.
-
McGrath, D.,
Zeller, L.,
Bonnell, R.,
Reis, W.,
Kampf, S.,
&
Williams, K.
(2023).
Declines in peak snow water equivalent and elevated snowmelt rates following the 2020 Cameron Peak wildfire in Northern Colorado.
Geophysical Research Letters,
50(6),
https://doi.org/10.1029/2022GL101294.
-
(2023).
Assessment of L-band InSAR snow estimation techniques over a shallow, heterogeneous prairie snowpack.
Remote Sensing of Environment,
296,
https://doi.org/10.1016/j.rse.2023.113744.
-
(2023).
Estimating snow accumulation and ablation with L-band interferometric synthetic aperture radar (InSAR).
The Cryosphere,
17(5),
1997-2019.
https://doi.org/10.5194/tc-17-1997-2023.
2022
-
(2022).
A western United States snow reanalysis dataset over the Landsat era from water years 1985 to 2021.
Scientific Data,
9(1),
1-17.
-
McGrath, D.,
Bonnell, R.,
Zeller, L.,
Olsen-Mikitowicz, A. ,
Bump, E. ,
Webb, R.,
&
Marshall, H.P
(2022).
A time series of snow density and snow water equivalent observations derived from the integration of GPR and UAV SfM observations.
Frontiers in Remote Sensing,
3,
https://doi.org/10.3389/frsen.2022.886747.
-
(2022).
A Novel Machine Learning–Based Gap-Filling of Fine-Resolution Remotely Sensed Snow Cover Fraction Data by Combining Downscaling and Regression.
Journal of Hydrometeorology,
23(5),
637-658.